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Abstract. The methods of conformal field theory arc used to compute the crossing prob- 
abilities between segments of the boundary of a compact two-dimensional region at the 
percolation threshold. There probabilities are shown to be invariant not only under changes 
of scale, but also under mappings of the region which are conformal in the interior and 
continuous on the boundary. This is a larger invariance than that expected for generic 
critical systems. Specific predictions are presented for the crossing probability between 
opposite sides of a rectangle, and are compared with recent numerical work. The agreement 
is excellent. 

Conformal field theory has been very successful in determining universal quantities 
associated with two-dimensional isotropic systems at their critical points [l, 21. The 
range of predictions which can be made appears to be bounded by the enthusiasm 
and industriousness of the theorist rather than by any intrinsic limitations of the theory. 
However, the underlying assumptions of conformal field theory, and their appropriate- 
ness for describing the scaling limit of critical lattice systems, are not rigorously 
founded, and it remains important to perform precise numerical tests of the theory 
whenever possible. 

Recently [3], extensive numerical work has been carried out to estimate crossing 
probabilities in rectangular geometries for critical percolation in very large but finite 
lattices, with the principal aim of establishing their universality between different 
models. Percolation provides an important test of the ideas of conformal field theory 
because large-scale numerical simulations are more readily performed. In this letter 
we consider the general problem of crossing probabilities in the language of conformal 
field theory, and derive exact expressions which may be compared with the numerical 
work. 

The most familiar way to think about percolation as a critical phenomenon is 
through the q +. 1 limit of the q-state Potts model [4]. In that model, spins s( r )  at the 
sites of the lattice are allowed to be in one of q possible states (a, p, . . .), and the 
partition function is the trace of a product over links of the form 

z = n (1  +-%,,,,',,d. (1) 
(,,.'I 

The terms in the expansion in powers of Z in powers of x are in 1-1 correspondence 
with configurations of bonds appearing in the bond percolation problem, and in the 
limit q + l  they are weighted appropriately if x = p / ( I - p ) .  Two sites in the same 
cluster are necessarily in the same state of the Potts model. Consider now two disjoint 
segments S,  and S, of the piecewise differentiable boundary of a simply connected 
compact region. Let Zme be the partition function of the q-state Potts model with the 
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constraint that all spins at lattice sites on SI are fixed in the state a, and all the spins 
on S, are fixed in the state p .  The rest of the boundary spins are unrestricted. Then 
the crossing probability between S, and S, is given by 

r(Sl,S,)=lim(Z,,-ZsB) (2) 
9-1 

where, in the second term a f p. In fact, in the limit when q = 1, the first term is unity. 
The interior of the compact region m a y  be mapped confom.a!!y to the q p e r  ha!f 

plane, so that the boundary is mapped onto the real axis. If there are comers on the 
boundary, the map will be singular but continuous at these points. Conformal field 
theory relates the partition functions in the two geometries, in a manner to be described 
later. Thus, if the images of SI and S, are the intervals (x,, x2) and (x3, x4) respectively 
(where we may assume that the xi are placed in increasing order), the problem reduces 
to that of finding the respective partition functions Z,, and Zap in this geometry. 

The study of boundary conditions in conformal field theory [5,6] shows that, for 
a particular theory, there is a given set of boundary conditions consistent with the 
conformal symmetry of the theory. In general they correspond to the possible fixed 
points of the renormalization group in the semi-infinite system: thus a generic boundary 
condition becomes equivalent in the continuum limit to one of those allowed by 
conformal symmetry. In addition, points on the boundary at which the boundary 

that is, scaling operators of the theory corresponding to highest weight states of the 
Virasoro algebra [5,7]. Situations where more than one change of boundary condition 
occurs then correspond to correlation functions of these boundary operators. In the 
case in question, let us denote the boundary condition where the spins are free by (f), 
and those where they are fixed in a given state by (a). Denote the boundary operator 
corresponding to a switch from boundary condition ( i )  to ( I )  at the point x b y  &:~j~(x) .  
Then the partition functions we need are given in terms of correlators by 

con&iion c~anges may be ideniified [(jj poinis ofinseriion of houndary operd~ors, 

(3) 
z,. = z , ~ A , ~ ~ ~ ~ X , ~ ~ ( ( . ~ , , ~ x z ~ ~ ~ , l ~ , ~ ~ , ~ ~ ~ ~ l , , ~ x ~ ~ ~  

zm,9 = ~ / ( ~ t r l . , ( ~ 1 ) ~ ~ ~ I , , ( ~ 2 ) ~ ~ , l s , ( ~ ~ ) ~ ~ t e l , , ( ~ 4 ) )  

where Z, is partition function with free boundary conditions all along the real axis. 
Note that, in the upper half plane, all three partition functions in general diverge in 
the infinite volume limit, and (3) strictly should be interpreted as being valid only for 
a large but finite lattice. However, when q = 1, Z,= 1 identically, and this problem 
does not arise. 

In order to compute the above correlation functions using the methods of conformal 
field theory, we need to understand to which representations of the Virasoro algebra 
the bounaary operators beiong. it has been known for some iime is, 9 j  ihai ihe criiicai 
q-state Potts model corresponds, in the continuum limit, to a conformal field theory 
with conformal anomaly number [7] c =  1-6/m(m+l), where q=4cos2(?r/m+1), 
with m 1. Thus percolation has c =O. This is consistent with the fact that e is related 
to the finite-size corrections to the free energy [lo] in certain geometries, and the free 
energy vanishes identically when q = 1. However, the problem of boundary operator 

121. However, it is not difficult to determine the assignment for the operators '&l.). 
For minimal conformal field theories, all the scaling operators have the property that 
their wrresponding representations contain null states [7]. This has the consequence 

~ 

xc innm~nt  h i e  nnt ham ~ A A r ~ r s r r l  rn fir P Y P P ~ ~  for thp cmes n = 2 and q = 3 [6, 11; ~ " " . ~  ..... _... 1.11 ..-. I__.. I--.- 111- "I .-., -..-- r. .-. _-.- ----- _I 
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that the allowed values of their scaling dimensions are given by the Kac formula 

(4) 
( r ( m +  ~ ) - s m ) ’ - l  

4 m ( m + l )  
h = h , ,  = 

where rand s are positive integers. In addition, the correlators involving these operators 
obey differential equations of order at most rs. For unitary models, for example those 
with positive definite Boltzmann weights, all allowed operators must be of this type. 
Although this condition is not applicable to the q-state Potts model for general q, the 
fact that it does apply for q = 2 and q = 3 suggests that those operators whose position 
(r, s) in the Kac table does not appear to change as a function of c(q) do correspond 
to representations with null states even in the non-unitary case. Indeed, it was conjec- 
tured in [5] that the spin operator of the Potts model, when inserted at a boundary 
with free boundary conditions, corresponds to (r, s) = (1,3).  This agrees with known 
results for q = 2 , 3  [6, 11, 121, and is also consistent with the known assignment of 
operators in the bulk. It gives a prediction for the case q = 1 which agrees with numerical 
estimates to within their accuracy [13]. There are ( 4 - 1 )  independent such spin 
operators. 

The continuum limit of duality symmetry [I41 for the critical q-state Potts model 
maps the free boundary condition ( f )  onto a fixed boundary condition (a). Exactly 
WIIIUL S L ~ G  il is ihoseii is aibiirsiy, jiiiie j i i ~ t  oiie spiii oii the ‘iouiidaiy has io be 
assigned a given value in order to make the duality mapping 1-1. An insertion of the 
spin operator at the point x on the free boundary is mapped into an insertion of the 
disorder operator q5(.lPJ(x) where p # a. There are just ( q  - 1) such operators, for a 
fixed a. This duality symmetry implies that that the correlators of +(a lp )  are simply 
related to those of the boundary spin operator with free boundary conditions, and 
hence that it also corresponds to (r, s ) = ( l , 3 )  in the Kac table. However, we are 
interested in the operators q5[-iJ). Consider the insertion of two such operators 
+~ml,,(x)q51,1B~(x’) as the points x, x’ approach each other. This is given by the operator 
product expansion, which symbolically must have the structure 

... L:-L “1-1.. ’ 

blmlf). ~(IIPJ-8syP1+ &ala)+.  ’ ’  (5) 

where 1 is the identity operator (no change in boundary condition). According to the 
fusion rules of conformal field theory [7], there is one such operator in the Kac table 
which has such a simple operator product expansion with itself, namely ( r ,  s) = (1 ,2) .  
We therefore conjecture that this is the correct assignment for the operators +[,lmJ, for 
general q. This agrees with the known results for q = 2  and q = 3  [6, 11, 121. It implies 
that the correlators involving these operators satisfy second order differential equations. 
From the Kac formula (4), we see that, in the limit q+ 1, their scaling dimensions are 
given by 

h=h,,,(O)=O. (6) 
This vanishing of the scaling dimension will turn out to have remarkable consequences 
when the result is transformed hack into the original geometry. In fact, it has a natural 
explanation. Consider a compact region on whose boundary there is a single segment 

the spins are free. In the limit q + 1, the partition function in this geometry is equal 
to unity, and equal to Z,, since in either case any spin can only be in a single state. 
But the ratio of these partition functions is equal to the correlation function 
( + l f l m J & l a , J J ) ,  which in general will scale like distance to the power 2h. This is only 

si on ..hid! the PO!!S spins zre fixed into the state al on the remainder QfthC boxndq, 
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consistent if h = 0. However, the form of the four-point functions, although simplified 
by this result, is non-trivial. Consider the half-plane geometry, when the points lie 
along the real axis. Conformal invariance implies [7] that they are of the form F ( q ) ,  
dependingonly on the invariant cross-ratio q = ~x~-x ,~(x2-x , ) / (x3-x , ) (x~-x2) .  The 
absence of other prefactors multiplying F is a consequence of h =O. The fact that the 
correlators satisfy second order differential equations implies that F( 7) satisfies a 
Riemann equation, whose general solution is [5 ,7]  

w i 
F = P  0 - 4 h 1 . 2  0 .}. (7) i 6  hi,, - 4 h 1 . 2 f h i . 3  hi,? 

Which solution is chosen depends on whether we calculate Z,, or Zap. Although it is 
straightforward to solve this problem for arbitrary q, we restrict ourselves to 9 = 1 for 
simplicity. In that limit, one of the solutions of the Riemann equation reduces to a 
constant, and the second solution is proportional to ql/' ZF,(fr f ,  $; q). The combina- 
tion corresponding to Za0 is determined by the requirement that as (x, - x2) + 0, that 
is q + 1, the operator product expansion ( 5 )  requires that the solution vanish like 
(1 - q)'/'. In addition, in the opposite limit q +O, we expect that Zyp +Z,,- = 1. Using 
simple identities on hypergeometric functions, we then find for the crossing probability 

Now consider the transformation of the upper half plane onto the interior of a 
simply connected compact region by a conformal mapping z +  w. If the boundary of 
the region is differentiable curve, this mapping may be taken to be conformal also on 
the boundary. In that case, correlation functions of operators on the boundary transform 
in the standard manner summarized by the formula 

(+l(WI)+2(W2).  . .) = n  l w ' ~ z ; ~ l - h ~ ~ + , ~ z , ~ + ~ ~ z 2 ~ .  . .) (9) 

where the correlation functions on the left- and right-hand sides refer to the new and 
the old geometry respectively, and hi is the scaling dimension of +j. In our case, 
however, since h =0, no such prefactors arise, and the correlation function is truly 
invariant. For a general critical system, the partition function for a compact region 
(without any operator insertions) is not itself scale invariant, but picks up a factor 
(L/L,,)" where L has the dimensions of length and gives the overall size of the region, 
Lois some non-universal microscopic scale (e.g. the lattice spacing), and n is geometry 

are absent. In general, there is a further complication when the boundaryof the compact 
region is only piecewise differentiable, and boundary operators happen to sit at the 
comers. In this case ( 9 )  does not apply. Instead there appear additional non-scale 
invariant factors of the form (L/ Lo) - (n /7 )h ,  where y is the interior angle at the corner. 
Such factors have been treated explicitly for the king model with various boundary 
conditions [ ! 5 ! :  However, once again, since h = 0 for the problem at handi such factors 
are absent. We conclude that crossing probabilities are indeed invariant under mappings 
which are conformal in the interior and are piecewise conformal on the boundary, but 
that this is not generic for all critical systems, for example when q # 1. 

&penderii [iG].   ow ever, for ihe of percaiai~on, c = 0 z = 1, so such ee:ecis 
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As an example, consider the case treated in [3] of the crossing probability between 
opposite sides of a rectangle of aspect ratio r. This is the image of the upper half plane 
under a Schwart-Christoffel transformation. Taking the points .q to he at 
(-k-', - l , l ,  k-I) ,  the aspect ratio of the rectangle is given by r = K ( 1 - k 2 ) / 2 K ( k 2 ) ,  
where K ( u )  is the complete elliptic integral of the first kind. The prediction is then 
that the crossing probability is given by (8), with 7 = ((1 - k)/( 1 + k))'. The results of 
this are illustrated in figures 1 and 2, and compared with the numerical data obtained 
in [ j j  for bond percoiation on square iaitices wiih approximaieiy 4 x  io' siies. it is 
seen from figure 2 that the deviations between the numerical experiment and the theory 
are consistent with the internal scatter of the data, although there appears also to he 
a systematic difference which may he due to finite-size effects. 

It is possible to generalize the above methods to treat the case of correlations 
between different crossing events. As long as the segments involved are not adjacent, 
such probabilities may always be related to correlation functions of &,I,,) operators, 
and they should have the same invariance properties as the simple crossing probabilities 

L n l r l  

Figure 1. Theory versus numerical data of [3] for the horizontal crossing probabilities 
rh(r) far rectangles of aspea ratio 1. In the figure, Ln((l - rhl/rh) is plotted against Ln I. 

The numerical data is represented by points, and the solid curve is the theoretical prediction. 

Figure 2. Deviation between numerical estimates and theoretical predictions of crossing 
probabilities nh(r) and 1 - rJr). 
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considered here. The fact that they enjoy these properties, which are not expected to 
hold for analogous quantities in generic critical systems, suggests that some of the 
ideas of conformal invariance might usefully be reformulated for the percolation 
problem without invoking the mapping to the Potts model. 

The author is grateful to R P Langlands for providing a copy of [3] before publication, 
and the numerical data shown in figures 1 and 2. He also thanks T Spencer and M 
Aizenman for stimulating his interest in this problem, and P Kleban for communicating 
the results of [15]. This work was supported by NSF Grant PHY 86-14185. 
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